Solution 4

1. A quick proof of Hölder's Inequality consists of two steps: First, assuming $||f||_p = ||g||_p = 1$ and integrate Young's Inequality. Next, observe that $f/||f||_p$ satisfies the first step. Can you find any disadvantage of this approach?

Solution. Following the hint, first assume $||f||_p = ||g||_p = 1$. We apply Young's Inequality to get

$$
|f(x)g(x)| \le \frac{|f(x)|^p}{p} + \frac{|g(x)|^q}{q}
$$

.

Then integrate, using $||f||_p = ||g||_p = 1$ and $1/p + 1/q = 1$ to get the Hölder's Inequality in the form

$$
\int_{a}^{b} |fg| \, dx \le 1.
$$

Next, since $F = f / ||f||_p$ and $G = g / ||g||_q$ satisfy the conditions in the first step. We have

$$
\int_a^b |FG| \, dx \le 1 \; .
$$

Writing back in f and g , we get the desired Hölder's Inequality.

Note. A disadvantage of this proof, in my opinion, is that it cannot yield the characterization of the case of equality.

2. Prove the generalized Hölder Inequality: For $f_1, f_2, \dots, f_n \in R[a, b],$

$$
\int_a^b |f_1 f_2 \cdots f_n| dx \le \left(\int_a^b |f_1|^{p_1} \right)^{1/p_1} \left(\int_a^b |f_2|^{p_2} \right)^{1/p_2} \cdots \left(\int_a^b |f_n|^{p_n} \right)^{1/p_n},
$$

where

$$
\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_n} = 1, \quad p_1, p_2, \cdots, p_n > 1.
$$

Solution. Induction on n. $n = 2$ is the original Hölder, so it holds. Let

$$
\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_{n+1}} = 1.
$$

First, using the original Hölder, we have

$$
\int_a^b |f_1 f_2 \cdots f_{n+1}| dx \le \left(\int_a^b |f_1|^{p_1} dx \right)^{1/p_1} \left(\int_a^b |f_2 \cdots f_{n+1}|^q dx \right)^{1/q} ,
$$

where q is conjugate to p_1 . It is easy to see

$$
1 = \frac{q}{p_2} + \cdots + \frac{q}{p_{n+1}} \; .
$$

By induction hypothesis,

$$
\int_a^b |f_2^q \cdots f_n^q| dx \le \left(\int_a^b |f_2|^{p_2} dx \right)^{1/p_2} \cdots \left(\int_a^b |f_{n+1}|^{p_{n+1}} dx \right)^{1/p_{n+1}},
$$

done.

3. Establish the inequality, for $f \in R[a, b]$,

$$
\int_a^b |f| dx \le (b-a)^{1/q} \int_a^b |f|^p dx, \quad 1/p + 1/q = 1, p > 1.
$$

Solution. This is a special case of the next problem, taking $p_1 = 0$ and $p = 1$.

4. For $p \in [p_1, p_2], p_1 \geq 0$, establish the inequality, for $f \in R[a, b],$

$$
\int_a^b |f|^p dx \le \left(\int_a^b |f|^{p_1}\right)^{\lambda} \left(\int_a^b |f|^{p_2}\right)^{1-\lambda}, \quad p = \lambda p_1 + (1-\lambda)p_2.
$$

Solution. The cases $p = p_1$ or $p = p_2$ are trivial. Now, observe that $p \in (p_1, p_2)$ can be written as $p = \lambda p_1 + (1 - \lambda)p + 2$ for some $\lambda \in (0, 1)$. We have

$$
\int_{a}^{b} |f|^{p} dx = \int_{a}^{b} |f|^{\lambda p_{1} + (1-\lambda)p_{2}} dx
$$
\n
$$
\leq \left(\int_{a}^{n} |f|^{\lambda p_{1}\lambda^{-1}} dx \right)^{\lambda} \left(\int_{a}^{n} |f|^{(1-\lambda)p_{2}(1-\lambda)^{-1}} dx \right)^{1-\lambda}
$$
\n
$$
= \left(\int_{a}^{n} |f|^{p_{1}} dx \right)^{\lambda} \left(\int_{a}^{n} |f|^{p_{2}} dx \right)^{1-\lambda}
$$

5. In a metric space (X, d) , its metric ball is the set $\{y \in X : d(y, x) < r\}$ where x is the center and r the radius of the ball. May denote it by $B_r(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_2, d_∞ and d_1 on \mathbb{R}^2 .

Solution. The unit ball $B_1^2(0)$ is the standard one, the unit ball in d_{∞} -metric consists of points (x, y) either |x| or |y| is equal to 1 and $|x|, |y| \le 1$, so $B_1^{\infty}(0)$ is the unit square. The unit ball $B_1^1(0)$ consists of points (x, y) satisfying $|x|+|y| \leq 1$, so the boundary is described by the curves $x + y = 1, x, y \ge 0, x - y = 1, x \ge 0, y \le 0, -x + y = 1, x \le 0, y \ge 0$, and $-x-y=1, x, y\leq 0.$ The result is the tilted square with vertices at $(1,0), (0,1), (-1,0)$ and $(0, -1)$.

6. Show that $||a|| = \left(\sum_j |a_j|^p\right)^{1/p}$ is no longer a norm for $p \in (0,1)$ in \mathbb{R}^n .

Solution. Although the first two axioms of a norm hold but the last one is bad. For example, take $a = (1,0), b = (0,1)$ in \mathbb{R}^2 . We have $|a|_p = |b|_p = 1$ so $|a|_p + |b|_p = 2$ but $|a + b|_p = |(1, 1)|_p = 2^{1/p} > |a|_p + |b|_p$, the inequality is reversed !

7. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is, $d(x, y) = 1$ if $x \neq y$.

Solution. When $r \in (0, 1], B_r(x) = \{x\}$. When $r > 1, B_r(x) = X$.

8. Let l^p consist of all sequences $\{a_n\}$ satisfying $\sum_n |a_n|^p < \infty$. Show that

$$
||a||_p = \left(\sum_n |a_n|^p\right)^{1/p}
$$

,

defines a norm on $l^p, 1 \leq p < \infty$. Propose a definition for the metric space l^{∞} .

Fix *n*. By the Minkowski inequality in \mathbb{R}^n ,

$$
\left(\sum_{j=1}^{n} |a_j + b_j|^p\right)^{1/p} \le \left(\sum_{j=1}^{n} |a_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |b_j|^p\right)^{1/p} \n\le \left(\sum_{j=1}^{\infty} |a_j|^p\right)^{1/p} + \left(\sum_{j=1}^{\infty} |b_j|^p\right)^{1/p}
$$

and the desired triangle inequality in l^p follows by letting $n \to \infty$.

One can define l^{∞} to be the vector space consisting of all bounded sequences. It is a normed one under $||a|| = \sup_{j\geq 1} |a_j|$.

9. Define d on $\mathbb{Z} \times \mathbb{Z}$ by $d(n, m) = 2^{-d}$, where d is the largest power of 2 dividing $n - m \neq 0$ and set $d(n, n) = 0$. Verify that d defines a metric on \mathbb{Z} .

Solution. Noticing that the function d is positive unless $n = m$, M1 and M2 are clearly satisfied. If 2^d divides $m - k$ and $k - n$, then 2^d divides $m - n = m - k + k - n$. Hence

$$
d(m, n) \le \max(d(m, k), d(k, n)) \le d(m, k) + d(k, n),
$$

and M3 is also satisfied.

,

Elementary Inequalities for Functions.

We start with the Young's Inequality covered in MATH2060.

Young's Inequality. For $a, b > 0$ and $p > 1$,

$$
ab \leq \frac{a^p}{p} + \frac{b^q}{q} \ , \quad \frac{1}{p} + \frac{1}{q} = 1,
$$

and equality sign holds if and only if $a^p = b^q$.

The number q is called the conjugate of p. Note that $q > 1$. The proof of this inequality is left to you. Basically, we use calculus to show the function

$$
\varphi(a) = \frac{a^p}{p} + \frac{b^q}{q} - ab,
$$

where b is fixed, has a unique minimum over $(0, \infty)$ at the point $a = b^{1/(1-p)}$, that is, $a^p = b^q$.

Hölder's Inequality. Let $f, g \in R[a, b]$ and $p > 1$. Then

$$
\int_a^b |f(x)g(x)| dx \le \left(\int_a^b |f(x)|^p dx\right)^{1/p} \left(\int_a^b |g(x)|^q dx\right)^{1/q}, \quad q \text{ is conjugate to } p.
$$

Equality sign in this inequality holds if and only if either (a) f or g vanish almost everywhere, or (b) there is some positive λ such that $|g|^q = \lambda |f|^p$ almost everywhere.

Proof. Assume $||f||_p$ or $||g||_q$ is non-zero, otherwise the inequality holds trivially. In the following it is assumed $||f||_p > 0$. You may also assume the other case, it is symmetric anyway. For $\varepsilon > 0$ to be chosen, by Young's Inequality,

$$
|f(x)g(x)| = |\varepsilon f(x)\varepsilon^{-1}g(x)| \leq \frac{\varepsilon^p |f(x)|^p}{p} + \frac{\varepsilon^{-q}|g(x)|^q}{q}.
$$

Integrate this inequality to get

$$
\int_a^b |f(x)g(x)| dx \le \frac{\varepsilon^p}{p} \int_a^b |f(x)|^p dx + \frac{\varepsilon^{-q}}{q} \int_a^b |g(x)|^q dx . \tag{1}
$$

.

We now choose ε so that

$$
\varepsilon^p \int_a^b |f(x)|^p dx = \varepsilon^{-q} \int_a^b |g(x)|^q dx ,
$$

that is,

$$
\varepsilon^{p+q} = \left(\int_a^b |g(x)|^q dx\right) \left(\int_a^b |f(x)|^p dx\right)^{-1}
$$

Using this epsilon to plug in (1), the right hand side becomes

$$
\frac{\varepsilon^p}{p} \int_a^b |f(x)|^p \, dx + \frac{\varepsilon^{-q}}{q} \int_a^b |g(x)|^q \, dx = \left(\int_a^b |f(x)|^p \, dx \right)^{1/p} \left(\int_a^b |g(x)|^q \, dx \right)^{1/q} \,. \tag{2}
$$

The Hölder's Inequality follows.

To characterize the inequality sign in this inequality, observe case (a) is obvious so let us assume $||f||_p, ||g||_q$ are both positive, so $|f(x)|, |g(x)|$ are positive almost everywhere. From (1) and (2) we see that the inequality sign in (1) becomes equality, that is,

$$
\int_a^b \left(\frac{\varepsilon^p |f(x)|^p}{p} + \frac{\varepsilon^{-q} |g(x)|^q}{q} - |f(x)g(x)| \right) dx = 0.
$$

The integrand is a non-negative function by Young's Inequality. The vanishing of this integral implies that the integrand must vanish almost everywhere, that is,

$$
\frac{\varepsilon^p |f(x)|^p}{p} + \frac{\varepsilon^{-q} g(x)^q}{q} - |f(x)g(x)| = 0 \ a.e. .
$$

By the equality sign condition in Young's Inequality, we conclude that

$$
\varepsilon^p |f(x)|^p = \varepsilon^{-q} g(x)^q \ a.e.,
$$

that is, $|g(x)|^q = \lambda |f(x)|^p$ almost everywhere where $\lambda = \varepsilon^{-p-q}$.

Remarks. (a) We have used the following proposition proved in Chapter 1: For $f \in R[a, b]$,

$$
\int_a^b |f| dx = 0
$$
 if and only if $f = 0$ a.e. .

We also point out, when $f \in C[a, b],$

$$
\int_a^b |f| \, dx = 0
$$
 if and only if $f = 0$ everywhere.

(b) When f and g in Hölder's Inequality are continuous, almost everywhere in the characterization of equality sign becomes everywhere.

(c) The inequality still holds in the limiting cases. In fact, when $g \in C[a, b]$ and $p = 1$, we have

$$
\int_a^b |f(x)g(x)| dx \le \int_a^b |f(x)| dx ||g||_{\infty} .
$$

When $f \in C[a, b]$ and $p = \infty$,

$$
\int_{a}^{b} |f(x)g(x)| dx \leq ||f||_{\infty} \int_{a}^{b} |g(x)| dx.
$$

But there is no clean characterization of the equality sign.

Minkowski's Inequality. For $f, g \in R[a, b]$ and $p > 1$,

$$
||f+g||_p \leq ||f||_p + ||g||_p.
$$

Equality sign in this inequality holds if and only if either (a) f or g vanishes almost everywhere, or (b) $||f||_p$, $||g||_p > 0$ and there is some positive λ such that $g(x) = \lambda f(x)$ almost everywhere. Proof. Using

$$
|f+g|^p = |f+g|^{p-1}|f+g| \le |f+g|^{p-1}|f| + |f+g|^{p-1}|g|,
$$

integrate both sides to get

$$
\int_{a}^{b} |f+g|^{p} dx \le \int_{a}^{b} |f+g|^{p-1} |f| dx + \int_{a}^{b} |f+g|^{p-1} |g| dx . \tag{3}
$$

,

Applying the Hölder's Inequality to the two integrals on the right separately, we have

$$
\int_a^b |f+g||f| dx \le \left(\int_a^b |f+g|^q dx\right)^{1/q} \left(\int_a^b |f|^p dx\right)^{1/p},
$$

and

$$
\int_{a}^{b} |f+g||g| dx \le \left(\int_{a}^{b} |f+g|^{q} dx\right)^{1/q} \left(\int_{a}^{b} |g|^{p} dx\right)^{1/p}
$$

where q is conjugate to p. Putting this back to (3) , we obtain the desired inequality after some simplifications.

The equality case, in principle, could be treated as in the Hölder's case. It is easy to get $|g(x)|^q = \lambda |f(x)|^p$ almost everywhere, but rather tedious (or need to use Lebsegue integral) to get $f(x)^p = \lambda g(x)^q$. Luckily, this property has no consequence in our later development.